-->

Расчет ежемесячного платежа по кредиту

Кредитный калькулятор

Как рассчитывается эффективная процентная ставка

После того, как Центробанк РФ обязал коммерческие банки раскрывать эффективную процентную ставку (ЭПС) по кредитам, это словосочетание прочно вошло в лексикон наших соотечественников. Меж тем, мало кто из них знает, что это такое. Данная статья призвана заполнить такой досадный пробел в знаниях, а также раскрыть один из приемов вычисления ЭПС.

Собственно, смысл эффективной процентной ставки достаточно прост — она призвана отражать реальную стоимость кредита с точки зрения заемщика, то есть учитывать все его побочные выплаты, непосредственно связанные с кредитом (помимо платежей по самому кредиту). Например, такими побочными выплатами являются печально известные «скрытые» банковские комиссии — комиссии за открытие и ведение счета, за прием в кассу наличных денег и т.п. Другой пример: если вы берете автокредит, то банк обязует вас страховать приобретаемый автомобиль на протяжении всего срока кредитования. При этом страховка будет являться для вас обязательной побочной выплатой (правда, уже не самому банку, а страховой компании).Что интересно, Центробанк, обязав коммерческие банки раскрывать эффективную процентную ставку по кредитам и даже предоставив формулу для ее расчета, не указал, какие конкретно платежи должны в этот расчет включаться. В результате разные банки придерживаются разных точек зрения на этот вопрос: многие, например, не включают в расчет как раз страховые выплаты.

Тем не менее, наиболее правильным и справедливым выглядит подход, согласно которому в расчет эффективной процентной ставки включаются все платежи, которые являются обязательными для получения данного кредита. В частности, все обязательные страховые выплаты.

Разобравшись с этим вопросом, мы теперь можем дать строгое определение эффективной процентной ставки.

Эффективная процентная ставка — это сложная процентная ставка по кредиту, рассчитанная в предположении, что все платежи, необходимые для получения данного кредита, идут на его погашение.

То есть, если в результате получения кредита размером S0 заемщик вынужден совершать платежи R0, R1, R2, . Rn в моменты времени t0 = 0, t1, t2, . tn соответственно (сюда входят как платежи по самому кредиту, так и побочные комиссии, страховые выплаты и т.п.), то эффективная процентная ставка i находится из соотношения

.

Эффективная процентная ставка служит в первую очередь для сравнения между собой различных банковских предложений, и при ее вычислении точные даты совершения платежей обычно неизвестны. Поэтому, если платежи совершаются через формально одинаковые промежутки времени продолжительностью τ (ежемесячно, ежеквартально и т.д.), то формула (1) приобретает следующий вид:

.

Если все платежи заемщика, за исключением, возможно, самого первого, одинаковы ( R1 = R2 = . = Rn = R ), то в соответствии с формулой вычисления суммы конечной геометрической прогрессии соотношение для определения эффективной процентной ставки будет таким:

.

К сожалению, найти точное значение эффективной процентной ставки даже в таком сравнительно простом случае невозможно, поэтому приходится его подбирать (лучше всего — при помощи специального численного метода). Как именно — об этом пойдет речь далее.

Для кредита со следующими условиями:

  • срок кредитования — 3 года;
  • процентная ставка (будем обозначать ее j ) — 18% годовых;
  • схема погашения кредита — ежемесячными равными (аннуитетными) платежами;
  • комиссия за организацию кредита — 1% от его суммы;
  • ежемесячная комиссия за ведение ссудного счета — 0,1% от суммы кредита

эффективная процентная ставка будет составлять 22,8%. Для проверки найдем значения всех переменных, присутствующих в формуле (3):

  • R0 = 0,01 × S0 ;
  • n = 36;
  • τ = ;
  • j = 0,18;
  • аннуитетный платеж: ;
  • R = A + 0,001 × S0 ≈ 0,0372 × S0 ;
  • i = 0,228;
  • месячная эффективная процентная ставка iм = (1 + i ) τ ≈ 1,017262.

Подставляя эти значения в формулу (3), после сокращения на S0 легко убеждаемся в справедливости равенства (если, конечно, пренебречь погрешностью округлений):

.

Общий метод вычисления ЭПС

Итак, мы уже отметили, что размер эффективной процентной ставки даже для относительно простых ссудных операций нельзя найти с помощью какой-либо формулы. На помощь здесь приходят так называемые численные методы, которые позволяют за конечное число шагов вычислить приближенное значение искомой величины с необходимой точностью.

Общий метод приближенного вычисления эффективной процентной ставки, который мы рассмотрим далее, может применяться для любой ссуды, платежи по которой совершаются через одинаковые промежутки времени. Его основу составляет численный метод Ньютона, суть которого, в общих чертах, заключается в следующем.

Допустим, нам нужно найти решение уравнения f(x) = 0, где f(x) — некоторая дифференцируемая функция. Тогда при определенных условиях последовательность чисел <x(k)>, где самое первое значение x(0) выбирается самостоятельно, а каждое последующее находится по формуле

,

сходится к точному решению этого уравнения. Нам сейчас не важно, что это за условия, при желании информацию об ограничениях метода Ньютона можно легко отыскать.

Посмотрим теперь, как использовать этот метод для вычисления эффективной процентной ставки.

Введем новую величину vτ = (1 + i ) –τ , которая называется множителем дисконтирования для периода времени τ. С ее помощью формулу (2), представляющую собой общее соотношение для нахождения эффективной процентной ставки, можно переписать следующим образом:

.

Нахождение корня этого уравнения эквивалентно нахождению корня функции

.

Эта функция имеет только один положительный корень (нас интересуют только положительные корни), причем, он лежит в интервале (0, 1). Этот корень можно легко найти с помощью метода Ньютона, предварительно вычислив производную функции f(x):

.

Теперь, выбрав в качестве начального приближения x(0) = 1, с помощью формулы (4) мы получим последовательность чисел x(k), сходящихся к точному значению vτ . Приближенное значение искомой эффективной процентной ставки находится из следующего соотношения:

(предполагается, что мы закончили вычисления на шаге с номером n ).

Найдем эффективную процентную ставку для ссуды размером S0 = 1000 фунтов стерлингов Соединенного Королевства, выданной на год под простую процентную ставку j = 20%. Для погашения ссуды заемщиком были внесены следующие частичные платежи:

  • R1 = 600 фунтов стерлингов через 3 месяца (t1 = ¼) после начала сделки;
  • R2 = 310 фунтов стерлингов через 9 месяцев (t2 = ¾) после начала сделки;
  • R3 = 194,25 фунтов стерлингов через год (t3 = 1) после начала сделки.

В качестве периода времени τ выберем один квартал (τ = ¼). В соответствии с описанным выше методом, введем вспомогательную функцию

и найдем ее производную:

Теперь, выбрав в качестве начального приближения x(0) = 1, с помощью формулы (4) построим последовательность приближенных значений дисконтирующего множителя vτ и эффективной процентной ставки i:

Кредитный калькулятор

Кредитный калькулятор

Кредитный калькулятор использует стандартные формулы, и взяв обычный калькулятор вы сможете легко проверить полученный результат, по приведенным ниже формулам.
Кредитный калькулятор — помогает рассчитывать ежемесячную сумму выплат на погашение кредита, эффективную процентную ставку по формуле Центрального Банка РФ, так же вы сможете узнать, какая часть выплат идет на погашение основной кредитной суммы, а какая часть на погашение процентов по кредиту.

Калькулятор, на сайте Calculator-Credit.ru, дает возможность расчета по двум видам платежей: аннуитетный платеж — это равный по сумме ежемесячный платеж по кредиту, который включает в себя сумму начисленных процентов за кредит и сумму основного долга, применяется в большинстве коммерческих банков; дифференцированный платеж — это ежемесячный платеж, уменьшающийся к концу срока кредитования, и состоит из выплачиваемой постоянной доли основного долга и процентов на невыплаченный остаток кредита, часто используется в СберБанке. Калькулятор кредитный — применяется , для сравнения различных типов займов и получения нужной информации не прибегая к помощи банковских специалистов.

Расчет дифференцированного платежа

Дифференцированные платежи в начале срока кредитования больше, а затем постепенно уменьшаются, т.е. регулярные платежи по кредиту не равны между собой. Структура дифференцированного платежа состоит из двух частей: фиксированной на весь период суммы, идущей на погашение суммы задолженности, и убывающей части — процентов по кредиту, которая рассчитывается от суммы остатка заложенности по кредиту. Из-за постоянного уменьшения суммы долга уменьшается и размер процентных выплат, а с ними и ежемесячный платеж.
Для того чтобы вычислить сумму возврата основного долга, необходимо первоначальную сумму кредита разделить на срок кредита (количество периодов):
Формула 1., где
ОД — возврат основного долга; СК — первоначальная сумма кредита; КП — количество периодов.

На этом сходство в подходах банков заканчивается, и начинаются различия. Состоят они в подходах к вычислению суммы причитающихся процентов. Основных подходов два, разница — в используемой временной базе. Часть банков исходят из того, что «в году 12 месяцев», и тогда размер ежемесячных процентных выплат определяется по формуле:
Формула 2., где
НП — начисленные проценты; ОК — остаток кредита в данном месяце; ПС — годовая процентная ставка.

Часть банков исходит из того, что «в году 365 дней» и такой подход называется расчетом точных процентов с точным числом дней ссуды. Размер ежемесячных процентных выплат в данном случае определяется по формуле:
Формула 3. , где
НП — начисленные проценты; ОК — остаток кредита в данном месяце; ПС — годовая процентная ставка; ЧДМ — число дней в месяце (понятно, что это число меняется от 28 до 31).

Пример 1.
В качестве примера приведен график платежей для кредита в размере 1 000 условных единиц на срок 12 месяцев, с ежемесячным возвратом 1/12 части кредита и уплатой процентов. В этом примере, как и на сайте Calculator-Credit.ru при расчете начисленных процентов используется формула № 2. («в году 12 месяцев»).

Таблица 1.
! При расчете необходимо учитывать погрешности округления.

Расчет аннуитетного платежа

Аннуитетными, т.е. равновеликими платежами называют платежи, которые производятся на протяжении всего срока кредита равными друг другу. При таком виде платежа заемщик регулярно совершает платеж одного и того же размера. Эта сумма может меняться только по соглашению сторон или в некоторых случаях частичного досрочного погашения. Структура аннуитетного платежа также состоит из двух частей: процентов за пользование кредитом и суммы идущей на погашение кредита. С течением времени соотношение этих величин меняется и проценты постепенно начинают составлять меньшую величину, соответственно сумма на погашение основного долга внутри аннуитетного платежа увеличивается. Поскольку, при аннуитетных платежах в начале сумма, идущая на погашение основного долга, убывает медленно, а проценты всегда начисляются на остаток от этой суммы, то и общий размер уплаченных процентов по такому кредиту больше. Это особенно заметно при досрочных погашениях. В первые периоды кредитования основные выплаты приходятся именно на погашение процентов по кредиту.
Величина аннуитетного платежа определяется по формуле:

Формула 4. , где
АП — аннуитетный платеж; ПС — процентная ставка за период начисления; СК первоначальная сумма кредита; КП количество периодов.
! Т.е. если платежи ежемесячные, то КП – срок в месяцах, а ПС месячная процентная ставка (1/12 годовой)

Формулу 4 можно назвать «классической», т.к. она применяется в расчетах, где все платежи аннуитетные, она применяется в большинстве банков, кредитных калькуляторах, в электронных таблицах. Так же она используется в расчетах на сайте Calculator-Credit.ru
Расчет аннуитетных платежей по этой формуле, можно производить с помощью MS Excel и встроенной функции рабочего листа PMT (в русских версиях ППЛАТ или ПЛТ)

Пример 2.
В качестве примера приведен график аннуитетных платежей для кредита в размере 1 000 условных единиц на срок 12 месяцев.

Таблица 2.
! При расчете необходимо учитывать погрешности округления.

Другие формулы для расчета аннуитетного платежа

Некоторые кредитные организации применяют формулу, где первый платеж — не аннуитетный:

Формула 5., где
АП — аннуитетный платеж; ПС — процентная ставка за период начисления; СК первоначальная сумма кредита; КП количество периодов.

Первый платеж предварительный — не аннуитетный. Он всегда, якобы, меньше АП, т.к. включает в себя только проценты за первый период, который может быть полным или неполным. Но при полном периоде — 31 день, при высоких ПС и долгосрочном кредитовании предварительный платеж может быть больше АП! Оставшиеся (КП-1) платежей – аннуитетные. Эта формула используется в АИЖК.

Также на практике встречается применение формулы, где первый и последний платежи – не аннуитетные:

Формула 6. , где
АП — аннуитетный платеж; ПС — процентная ставка за период начисления; СК первоначальная сумма кредита; КП количество периодов.

Первый и последний платежи не аннуитетные, первый — только проценты за первый период, а последний — остатки, «хвосты» и т.д.
Оставшиеся (КП — 2) платежей — аннуитетные. Видимо, банки подгоняют АП под целое число рублей или долларов. Поэтому образуется «хвост», который переходит на последний не Аннуитетный Платеж. Далее после каждого досрочного погашения банки подгоняют уже новый уменьшенный АП под целое число денежных единиц. Т.е. «хвост» может уменьшаться или увеличиваться.

Наименьший Аннуитетный Платеж получается при расчетах по формуле 4, наибольший — по формуле 6. Причем чем меньше АП остается до окончательного расчета, тем существеннее становится эта разница. Что особенно важно при досрочном погашении. Поэтому необходимо интересоваться не только процентной ставкой, но и формулой по которой рассчитываются АП.

Что выгоднее аннуитетная или дифференцированная схема платежей?

Вопросам выбора схемы платежа по ипотечному кредиту часто задаются потенциальные заемщики. Если сравнивать аннуитетную и дифференцированную схемы, то самыми очевидными различиями будут являться следующие:

  • Неизменность размера регулярного платежа при аннуитетной схеме и постоянное убывание такого платежа при дифференцированной.
  • Больший размер платежа, по сравнению с аннутетной схемой, в начале срока кредита при дифференцированной схеме.
  • Аннуитетная схема выплат более доступна для заемщиков, т.к. выплаты равномерно распределяются на весь срок кредита. При выборе дифференцированных платежей подтвержденный доход заемщика или созаемщиков должен быть примерно на четверть больше, чем при аннуитетных платежах.
  • При аннуитетных платежах в начале сумма основной задолженности убывает медленно, а и общий размер начисленных процентов больше. Если заемщик решит полностью погасить кредит досрочно, выплаченные вперед проценты будут потеряны. При аннуитетной схеме значительная часть процентов уплачивается с начала, обеспечивая выплаты на весь срок кредита. Поэтому при дифференцированных платежах досрочное погашение будет происходит без таких финансовых потерь даже в начале срока ипотечного кредита.
  • Кредит с дифференцированным платежом труднее получить, т.к. при получении кредита оценивается платежеспособность заемщика. Дифференцированная схема в начале срока кредита предлагает значительно большие платежи, нежели аннуитетная. Это означает то, что заемщику необходимо иметь больший доход. В среднем считается, что доход заемщика при дифференцированной схеме должен быть больше на 20% выше, чем при аннуитетной схеме.

Подводя итог можно сказать, что вид платежа является одним из основных параметров кредита, однако рассматривать его необходимо в совокупности с другими параметрами.

Данная статья защищена авторским правом. При использовании данного материала ссылка на источник обязательна.

Кредитный калькулятор

Онлайн заявка на кредит

Оформить онлайн заявку на кредит можно на сайте практически любого банка. Удобство для клиента здесь очевидно — заполнение заявки на сайте без визита в офис экономит ваше время. Банкам это также выгодно, так как это экономит время сотрудников. Собрать всю необходимую информацию о потенциальном заемщике и принять решение по одобрению кредита банк может без посещения клиентом офиса. Документы и справки можно предоставить в электронном виде. Личный визит будет необходим только для предоставления оригиналов документов и подписания договора.

Рассчитайте свой кредит самостоятельно

Кредитный калькулятор с досрочным погашением предназначен для самостоятельного онлайн расчета параметров кредита, таких как сумма ежемесячного платежа и общей переплаты по кредиту на основании желаемой для заемщика суммы и срока кредита, а также процентной ставки. После выполнения расчета вы получите подробный график платежей, содержащий подробную информацию о каждом ежемесячном платеже, а именно: общая сумма платежа, какая часть этой суммы идет на погашение процентов, а какая на погашение основного долга, и остаток основного долга.

Использовать онлайн калькулятор для расчета кредита очень удобно. Можно осуществлять любые расчеты, не прибегая к помощи специалистов.

Процентная ставка

Процентная ставка — это стоимость кредита, которую предлагает банк. Каждый банк имеет свои программы кредитования населения и предлагает разные процентные ставки. Даже в одном банке процентная ставка может сильно отличаться при различных условиях. Она может зависеть от таких факторов, как возраст заемщика, его кредитная история, цель предоставления кредита, сумма кредита, наличие поручителей. Бывает, что банки предоставляют своим постоянным клиентам (например, владельцам дебетовых карт или лицам, которые уже пользовались кредитом) более выгодные условия кредитования, чем клиентам «с улицы». Актуальные процентные ставки банков вы можете узнать на сайтах этих банков.

Тип ежемесячного платежа

Ещё один параметр, влияющий на результат расчета — вид платежа. Аннуитетный — это такой платеж, при котором сумма ежемесячного платежа остается неизменной на протяжении всего срока кредита. Дифференцированный — это тип платежа, при котором сумма ежемесячного платежа уменьшается к концу срока кредитования. Происходит это за счет того, что доля основного долга остается неизменной, а доля процентов с каждым месяцем уменьшается, так как уменьшается общая сумма долга. Наиболее распространён первый вид платежа — аннуитетный.

Кредитный калькулятор удобно применять с целью сравнения результатов при различных исходных значениях, таким образом, выбирая для себя оптимальные условия кредита. Возможность сохранять полученные результаты ещё больше упростит этот процесс.

Источники: http://calculator-credit.ru/articles/effective-rate.html, http://calculator-credit.ru/articles/credit-calc.html, http://calcus.ru/kreditnyj-kalkulyator

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *